AD-A256 355
L

Work Efficient Hashing on Parallel and Vector
Computers

Thomas J. Sheffler Randal E. Bryant
August 18, 1992
CMU-CS-92-172

ELECTE ¥
0CT 081392 &

School of Computer Science
Carnegie Mellon University
Pittsburgh, PA 15213

I Thit deriment Lics been approved
fcr prblis reloase and sale; iis
distributicn is unlimited. |

- -

:

This research was sponsored in part by the Avionics Laboratory, Wright Research and Development Center,
Aeronautical Systems Division (AFSC), U.S. Air Force, Wright-Patterson AFB, Ohio 45433-6543 under Contract
F33615-90-C-1465, ARPA Order No. 7597. Connection Machine time was provided by the Northeast Parallel Archi-
tectures Center, and by the Pittsburgh Supercomputing Center (Grant ESC910004P). Cray Y-MP time was provided
by the Pittsburgh Supercomputing Center (Grant ASC890018P).

R R Y J.o\ 92_26739
o S mANAERRH ot

Keywords: Data-parallel, parallel algorithms, vectorized algorithms, parallel hashing

Abstract

Hashing techniques have long been used to efficiently store and locate data indexed by key. Recently,
parallel hashing algorithms have been developed that allow table insertion of many keys in a few
parallel steps. The analyses of these algorithms have focused on the expected number of steps
required, ignoring the issue of work complexity. As a result, these algorithms have not been work
efficient. In this paper, we present a parallel hashing algorithm that is shown to be work efficient
because it performs no more work than its serial counterpart. An analysis of its behavior shows
that it performs § = O(logn) expected parallel steps and W = O(n) expected work.

Many parallel algorithms can make use of hashing as a core step. Procedures such as histogram-
ming, set difference, keyed reduction and dictionary lookup can be formulated using a general hash
routine. Thus, parallel hashing is an important fundamental parallel operation. The above appli-
cations may also be implemented using sorting as the core step. While the use of parallel hashing
has been generally accepted in the folklore of parallel computing, a dearth of literature about the
expected performance of such algorithms has led many to favor the use of sorting. This paper sheds
light on the performance that may be achieved using parallel hashing algorithms and should lend
credibility to their use. '

Performance data collected from an implementation of our algorithms on the Connection
Machine CM-2 and CRAY Y-MP show that it is faster than sorting by up to a factor of four on
both machines. These data show that the total time required by the algorithm is more closely
related to the amount of work performed, rather than the parallel step count. Qur results indicate
that work efficiency is an important consideration when trying to achieve high performance on
parallel machines.

Accesion 1or T
—— ———— e e e e
NTIS CRA& J
DTIC TAS -
Unannouncaed ;
Justifization -‘

By
Dist. ib::tion |

Availehnity o0~

A‘/Qi’ e Sy
Dist Sportai

1 Introduction

Hashing techniques have long been used to perform table lookup on serial machines. While some
hashing techniques have also been extended to parallel and vector computers [Kan90], it is only
recently that the algorithmic complexity of parallel hashing algorithms has been studied[LPP91,
And88). In [Kan90}, a vectorized algorithm was described that is similar to the one presented here,
however no bounds were placed on the expected performance of the algorithm. While [LPP91]
provided the framework for understanding the total number of parallel steps required, and [And88]
provided an empirical study of parallel step counts, neither recognized the importance of work
complexity. In this paper we place expected case bounds on the parallel step count of our algorithm
as well as its work complexity. We show that an important indicator of actual performance is the
total amount of work performed, and that to achieve high performance a parallel algorithm must
be carefully designed to perform no more total work than necessary.

We also extend parallel hashing to the solution of a more general problem that we call the
naming problem. Algorithms that solve the naming problem may be based on either sorting or
hashing. When a total order of the elements to be named is not required, the sorting algorithm
performs more work than necessary. This is borne out by the algorithmic complexities of the two
methods in which general parallel sorting performs 2(nlogn) work for arbitrary sized keys but our
hashing algorithm performs only O(n) expected work.

The remainder of this paper is organized as follows. First, the naming problem is defined
as a generalization of hash table insertion and a number of fundamental parallel algorithms are
outlined that use the naming algorithm as a core step. Next, the parallel vector model of computing
is described and we present our work efficient parallel hashing algorithm. Finally, we present
performance data collected from an implementation of our algorithm on the Connection Machine
CM-2 and CRAY Y-MP and discuss the implications of work efficiency with regard to parallel step
count. The expected case behavior of the parallel algorithm is analyzed in an appendix where we
show that our parallel hashing algorithm performs no more work than its serial counterpart.

2 The Naming Problem

When building a table using hashing, each insertion of a new data item involves finding either a
previous instance of the same key, or an empty site in which to put the key. A parallel algorithm
for key insertion may be constructed in which a vector of keys are inserted together. The value
returned by such a parallel algorithm is a vector of table indices identifying the final hash sites of
each key,

This problem attempts to find a mapping of keys from a potentially large universe to a small
hash table. This is an instance of the naming problem which is as follows: a multiset X of n
elements selected from some universe U are to be assigned names in the range {1..m}, m > n, such
that two elements are given the same name if and only if they are the same element from U.

The naming problem is one that is fundamental to many parallel algorithms. Often the names
represent a limited resource and the keys label data that are to share those resources. In the
most common instance of the naming operation, the names to be assigned are processor IDs of
the available processing sites and keys identify data that are to be combined at a common site.
The processing site assigned to common keys is called an agent, and does work on behalf of the
keys assigned to it. The naming operation serves to separate the construction of a communica-
tions mapping from the operation performed with that mapping. The following list presents some
examples of algorithms easily implemented using the naming operation.

Histogramming: After the keys are named, each key sends the value 1 to its agent. The agent
counts the number of incoming messages using a combining send operation, which is a prim-
itive operation of the collision+ PRAM[Wyl79).

Removal of Duplicates: The keys identify a multiset and all duplicates are to be removed. Each
key sends its index in the key set to its agent. Of the indices sent to each agent, an arbitrary
one is kept. Using the kept indices, the agents mark the keys to be saved, others are swept
away in a packing step.

Keyed Reduction: The @-reduction of the values associated with each key is performed by each
agent processor applying a binary associative operator, @, to all values sent to it. This is a
generalization of the histogramming operation.

Dictionary Lookup: In this application some of the keys are dictionary entries, and others are
dictionary queries. After the naming step, all dictionary entries send their values to their
agent site. The keys that represent queries may then query their agent directly to find the
value.

Associative Computing: The 3 operation of CM-Lisp [SH86] is a complex combination of com-
munication and computation that may be expressed as a dictionary lookup step, followed by
keyed reduction, followed by duplicate removal. Clearly, each of these operations may be
implemented using the naming operation.

2.1 Algorithms

In many applications, there is a total order defined for the keys and the naming operation may be
implemented by using a sort procedure. In this method, after the keys are placed in sorted order,
they are divided into groups such that a new group begins where a key differs from its left neighbor.
The first element of each group is called its “leader.” The available names are distributed to the
leaders, which then distribute the names to all members of their groups.

The sorting step dominates the time spent in the procedure outlined above, and may not be
applicable if there is not a total order on the keys. Even when applicable, because sorting requires
Q(nlogn) operations it is not work efficient for the naming problem.

In this paper we present a family of efficient parallel algorithms that solve the naming problem
by using parallel hashing. The first step of the algorithm uses a hash function, h, that uniformly
distributes the n keys across the name space. At each step of the iterative procedure, a large
number of keys claim names. These keys are removed from the working set by using a “packing”
step so that the working set size decreases as the algorithm proceeds. Many keys find names in just
the first few parallel steps, after which, the number of keys remaining in the working set decreases
quickly.

3 The Parallel Vector Model of Computing

The parallel vector model of computation builds on the standard RAM model by adding a separate
vector memory and vector processing unit [Ble90]. Operations on vectors have the distinction of
being performed in parallel. For example, the addition of two vectors can be performed for all
elements of the result vector simultaneously. A standard RAM would iterate through each of the
elements to calculate the same result.

The parallel vector model imposes no restrictions on the length of a vector. Two complexity
measures are introduced for algorithms in the vector model. The first is the step complexity, which
measures the total number of vector instructions issued. Another complexity measure, the work
complexity, measures the total number of vector elements operated on over all instructions. The
work complexity of an algorithm is the same as the time complexity of the algorithm on a single
processor since it measures the total number of single element operations performed. A parallel
algorithm is work efficient if it has a work complexity no greater than that of an equivalent serial
algorithm that solves the same problem.

The step and work complexity measures are related to the PRAM model through the following
relation. For an algorithm with step complexity § and work complexity W, the PRAM complexity
of the algorithm is

t=0(W/p+S)

for a p-processor PRAM. This result is due to a simulation argument in which the vector algorithm is
simulated on an EREW PRAM that provides unit-step parallel-prefix operations {Ble90]. Given an
unbounded number of processors, the complexity is dominated by the step complexity. Conversely,
the work complexity indicates the total number of operations performed when only one processor is
available. All real parallel machines have a processor count somewhere between these two extremes;
when designing algorithms for the vector model it is important to keep both measures in mind.

3.1 Analysis of Algorithms

All algorithms presented in this paper will be analyzed for their step and work complexities in the
vector model. In the parallel hashing algorithms the step complexity is related to the number of
iterations required to complete the insertion of all n keys, while the work complexity is related to
the sum of the number of active elements over all steps.

4 Parallel Hashing

Traditional serial hashing algorithms are concerned with the efficient creation of a hash table
(inserting all n elements) as well as being able to locate keys already in the table [Knu68]. The
naming problem only concerns itself with the insertion phase of hash table use; its final result is
the set of key destinations.

Closed table hash algorithms begin with a function h that is designed to map each of the keys
uniformly to some number in the range {1..m} for the given m. As each key is inserted, its hash
location is probed to examine whether another key has already been inserted there. If so, an
iterative search procedure is used to find an empty site. The sequence of hash sites examined by
each key is called a “path.” Ideally, each key examines a different path so as to avoid a situation
where many keys collide repeatedly along the same path. This phenomenon is called “clustering.”

In the parallel version of hashing, the insertion of many keys is attempted in one step. Those
that fail all examine the next site in their path in parallel. The process continues until all keys find
a hash site.

Whereas the analysis of the running time of the serial algorithm is concerned with the average
time of insertion for each of the n keys, the parallel algorithm must consider two measures of
performance. The first is the total iteration count, which is governed by the mazimum number of
probes required to insert any of the keys since the algorithm cannot terminate until all keys find a
hash site. The second measure is the total work performed, which is the sum over all iterations of
the lengths of the vectors involved in each operation.

3

Our algorithm accepts a vector of n keys and returns a vector of names. A hash table of length
m is allocated and initialized so that all locations have the special value EMPTY. Upon completion,
the name associated with key[i] is located at name/i]. On the CM-2, the name for each key is found
on its own processor at the completion of the algorithm.

Pseudo-code for our algorithm is presented below. In the initialization step (Lines 1-4), the
keys are copied to a vector called active and the initial hash sites are calculated by hash-fn. The
home vector records the starting location of each key. After each iteration of the algorithm, these
temporary vectors are adjusted to hold only the information relevant to tLose keys that have yet
to find a hash site.

The main step of the algorithm is described by the parallel-do loop of Line 6. In parallel, all
keys check to see if their hash site is empty. Those that find an empty site try to claim it by sending
their key there. When multiple keys are sent to the same site, one overwrites all others ensuring
that at least one key claims the site. With one more table reference, the hash site of each key is
examined to determine which key claimed it. Keys that find their own value are marked done and
their hash site is sent home to the names vector. All other keys continue with further probe steps
by calculating a new hash site in Line 18.

input: keys[n], table{m];

output: names|n};

temporary: hash[n], get[n], active[n], home[n], notdone[n];
procedure parallel-insert {

(1) pardo (0 < i < n){ (* Initialization =)
(2) active[i] = keysi]
(3) homel[i] = i;
(4) hash[i] = hash-fn(keys[i], m);
(5) while (length(active) # 0) {
(6) pardo (0 < i < length(active)) {
(M get[i] = table[hash(i]]; (* check hash site x)
(8) if (get[i] == EMPTY) {
(9) table[hash[i]] = keys{i]; (* attempt to claim it »)
(10) get = table[hashl[i]]; (= check it again *)
}
(11) notdonefi] = (get[i] # keys[i]);
(12) if (not(notdonefi]))
(13) names[home(i]] = hash(i];
}
(14) active = pack(active, notdone); (* pack unfinished keys =)
(15) home = pack(home, notdone);
(16) hash = pack(hash, notdone);
(17) pardo (0 < i < length(hash}) {
(18) hash(i] = next-fn(hash(i], active(i}); (+ probe step »)
}

The use of the pack step on Lines 14-16 ensures that this procedure is efficient by producing a
new vector that holds only the elements that are flagged as notdone. Procedure pack is implemented
by first enumerating the true sites and then sending the values at these sites to their enumeration
address. In the parallel vector model it is implemented with a single “scan” operation (parallel-
prefix) and a parallel vector permutation. Thus, its complexity is § = O(1) parallel steps and
W = O(n) work for a vector of length n.

The function next-fn may be designed to implement a number of different probe strategies. The
path that each key follows may be defined by either “Linear Probing” or “Double Hashing” probe
strategies. Linear probing simply searches the hash sites in sequence. Double hashing attempts
to reduce “clustering” by using a probe strategy where the path each key follows is a function of
its value. To implement this algorithm, a second hash function, ks, is employed and the ith site
examined for the key is ((h(A4) + ithy(A)) mod m).

Another variation also adopted in many serial hashing algorithms is the use of an “Overflow”
hash table. In this approach, two hash tables (designated T) and T:) are used such that each key
makes its first probe into 7; and makes all other probes in T. This arrangement takes advantage
of the fact that many keys require only one probe, leaving table T, nearly empty.

In the appendix, we show that for Linear Probing, our algorithm performs a total of § =
O(logn) expected steps, and W = O(n) expected work. Analyses of double hashing algorithms
show that on the average, they reduce the total number of probe sites examined [Knu68]. We
implemented a version of double hashing and compare our results to linear probing on the CM-2.
On the CRAY we implemented both probe strategies with and without an overflow table. The
performance of our implementations is discussed in the following sections.

5 Implementation on the Connection Machine CM-2

We implemented our algorithms on the Connection Machine model CM-2. Through the virtual
processor (VP) mechanism of the system software we were able to support the varying sized vectors
that our pack procedure produced. As stated earlier, this was necessary to ensure work efficiency.

Our choice of a hash function was guided by the target architecture for implementation. One
particularly good hash function is based on a result from coding theory [Gal68|. It treats an n-bit
key as a polynomial in GF(2") and computes an m-bit hash value as the remainder of division by
a primitive irreducible polynomial of the field GF(2™). These hash functions are often not used
on conventional architectures because of the bit manipulations that must be performed. Because
the CM-2 is a bit-serial machine, these hash functions are extremely fast. Also, because these hash
functions require a table whose size is a power of two, they are perfectly suited to the size of VP
sets and guarantee that keys are evenly distributed over all processors of the CM-2.

A minor modification was made to the insertion procedure. Because communications operations
require as much as 1000 times as much time as elementwise operations on the CM-2, the procedure
parallel-insert was modified to reduce the total number of communications operations performed by
omitting the first get step. Instead, as hash sites are claimed, a flag is set. During the probe step,
all keys send their values regardless of the state of their hash site. Then, non-empty hash sites
overwrite the value sent there with the key that previously claimed the site. Even with large hash
tables, these elementwise operations take virtually no time, and are outweighed by the savings from
eliminating the extra communications operations. Theoretically, this increases the work complexity
of the algorithm by O(mlogn), but does not have an effect when logn < 1000, which is a reasonable
assumption for our problem sizes.

5.1 Results

A series of trials were taken for n ranging from 50,000 to 2,000,000 elements on a 16k processor
Connection Machine. The key size in this trial was 32 bits but the universe of possible keys was
restricted to be a random set of size n. In this manner, the keys represent a random mapping of
a set into itself. Each trial point was repeated a total of five times and the average time reported

VP=32 VP=64 VP=128

oI - T - -

Number of Keys

Figure 1: A comparison of th: hashing algorithms to a naming algorithm that uses sorting. Through all
trials the hashing algorithms performed better by a factor of 3 to 4.

was measured in CM seconds, the amount of time the Connection Machine required to complete
all iterations. Both “linear probing” and “double hashing” schemes were compared to a naming
algorithm that sorted the keys using the RANK function of the system software and enumerated
the leaders to assign names. Figure 1 summarizes our results.

Through all trials, the hash based algorithms outperformed the sorting based algorithm by a
factor of 3 to 4. The sharp jumps in times for the sort based algorithm occurred where the vector
size increased past a VP ratio boundary. Our data spans VP ratios of 2 to 128 and shows that the
hashing algorithms have linear characteristics even over VP ratio boundaries.

It is interesting to notice that the two variants of hashing require almost the same time for all
key set sizes. Even though the total number of iterations required by the “linear probing” variant
always exceeded those required by “double hashing”, the extra iterations were performed on such
small vectors that the additional time is negligible. This point deserves further examination.

Figure 2 shows the average number of iterations required for each algorithm for different input
set sizes. The sharp drops in the curves are due to the fact that the hash table and overflow table
sizes were rounded to the next power of two when the key set size exceeded a VP ratio boundary.
In those situations when the hash table was very large with respect to the number of keys, the
nuraber of iterations became quite small. While we see that double hashing keeps the number of
iterations performed smaller than by using the linear probing method, the total times spent by the
algorithms are roughly the same, and are not affected very much by the occasional large jumps in
the number of iterations.

Figure 3 provides further insight into the impact of the total number of iterations on the
completion time. The trials for the insertion of 1,900,000 keys using double hashing required a
wide range of iterations to complete. Even as the iterations increased by almost a factor of 2, the
total time grew by only 7%. The time is dominated by the first few probe iterations with long
vectors; all other iterations are performed with very short vecto:s; and require a small percentage
of the total time.

s VP=32 VP=64 VP=128

50
45

>
i
a8Rs8us

10

] |]
0 500000 le+06 1.5¢+06 2e+06

Number of Keys

Figure 2: The average number of iterations required by the two hashing algorithms. The data show that
double hashing keeps the total number of iterations lower than the number required by linear probing. The
unusual drops in the curves occur when the hash table increased to the next VP set size on the CM, resulting
in a hash table with a very low load factor.

4
I
™
2 Double Hashing
Secs N=1900000
14—
0 T T | T
20 25 30 35 40 45

Number of ltcrations

Figure 3: A comparison of the execution times when the number of iterations varied greatly. Even though
the number of iterations spanned a wide range, the time increased by only a small amount when the number
of iterations grew large. All of the extra iterations were performed with very small vectors and required very
little time.

1e+06

Active
Keys

I S S SO SN S T (N (Y SN N NN |
6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

L1
0 1 2 3 4 5

Iteration Count

Figure 4: The number of active keys at each step in the hashing algorithm. The hashing algorithm
eliminates many keys from the active set in just a few iterations. In this graph, the total number of active
keys is less than 100 after eight iterations. Most of the iterations are performed with very short vectors.

The decrease in the number of active keys is shown in Figure 4. When inserting one million
keys using the double hashing algorithm, by the eighth iteration the total number of active keys
fell below 100. Probe iterations performed with small vector lengths are completed quickly.

6 Implementation on the CRAY Y-MP

The implementation of the hashing algorithm on the CRAY Y-MP was straightforward because all
operations completely vectorize. We used the CVL (C Vector Library) developed by Guy Blelloch
at Carnegie Mellon University for most of the vector operations [Ble92], but developed our own
hash function in CRAY vectorized C.

As with the implementation for the CM-2, the hash function was highly optimized for the target
architecture. We chose to use a standard remainder operator as our hash function and sized the
hash tables to be the least prime number greater than the number of keys. However, because
the standard modulo operator (’%’) of CRAY C calls a subroutine that computes the remainder
between two 64-bit integers, it was much too slow. We wrote a highly optimized modulo function
that took advantage of the facts that the same modulus was applied to all keys, and that it had
far fewer than 64-bits of significance. Using these observations, we divided the computation into
two parts that each used an integer division and a subtraction operation, yielding a very fast hash
function.

The next-site function, next-fn, was written to allow the choice of Linear or Double probing,
with or without an overflow table. Double probing was described earlier. To implement an overflow
table, we conceptually divided the hash table into two parts: it’s lower half acting as T}, and the
upper half acting as T;. The next-site function was written to supply a first probe site in the lower
half, with all other probes indexing sites in the upper half. In this manner, a single site address

CRAY
Secs

Linear-- -
Linear-Overflow—m7m—7—F————
ble———o——
Double-Overflow———

[500000 le+06 1.5¢+06 2e+06

Number of Keys

Figure 8: A comparison of the times of the hashing algorithms to the time to sort the keys on the CRAY
Y-MP. Through all trials, the hashing algorithms performed better by a factor of 4 to 5. While the more
complicated probe strategies required fewer total iterations, the total time required by each was nearly equal.

could specify one of the two tables and a site within that table.

6.1 Results

Once again, we measured the performance of our hashing algorithm relative to sorting. This time,
the sorting time measured represents only the time required to sort the keys using the ORDERS
subroutine of the system software. The key size in this trial was 64 bits and the keys once again
represented the random mapping of a set into itself. Figure 5 summarizes the performance for each
of the four combinations of probe strategies relative to sorting. Throughout all trials, the hashing
algorithms outperformed the CRAY ORDERS subroutine by up to a factor of 5.

It is interesting to notice that the total times required by each of the four approaches to
hashii:g are nearly equal. In general though, the fastest approach was the simple Linear Probing
search, while the slowest was Double Hashing with an Overflow table. These results are somewhat
surprising in light of the total number of iterations required by each approach.

Figure 6 displays the average number of iterations per key required by each of ihe variations.
Clearly, the simple Linear Probing approach performs far more steps than when using Double
Hashir.;, with an Overflow Table. The effect observed here is that the extra complexity of the
next-site function (next-fn) when usiag Double Hashing and an Overflow table far outweighs any
benefits achieved by a reduction in the number of iterations. Thus, the simple and straightforward
Linear Probing approach is the fastest even with the cost of additional iterations. While the more
sophisticated probing algorithms did reduce the total number of probe steps required, their extra
complexity caused a loss in actual performec ice.

This effect is due to the fact that computation and communication are so nearly balanced
on the CRAY Y-MP. While some machines perform local arithmetic operations much faster than
they can permute a vector, on the CRAY Y-MP these operations require nearly the same amount

Iterations

Number of Keys

Figure 6: The average number of iterations per key on the CRAY Y-MP for each of the four approaches.
In general, the more complicated probing schemes reduced the total number of probe steps, as expected.
However, as the complexity of the probe function increased, so did the execution time, making the simplest
probe scheme preferable.

of time per element. Because of this, it is faster to perform the simple Linear Probing hashing
algorithm than to use a more clever (and complicated) probing function. On a machine with slower
communication, it might be wise to use the more sophisticated probing schemes.

7 Conclusions

The naming problem is one that is fundamental to many parallel algorithms. While the most
straightforward implementation of this parallel kernel uses sorting to organize the keys, we have
presented an efficient randomized hashing-based algorithm that is more efficient both in theory and
practice.

The main idea that should transfer from this work is the importance of reducing the problem
size as the algorithm progresses. Many Connection Machine algorithms have been designed with
a fixed number of processors in mind. This design influence reflects an earlier view of the CM
when the number of virtual processors was fixed throughout the execution of a program. Because
virtual processor sets may be allocated dynamically, the view of the CM is one of a dynamically
reconfigured vector processor, whose length adjusts to fit the problem size. We have shown the
importance of reducing the problem size and using smaller VP sets when possible. On vector
computers such the CRAY Y-MP, the benefit of compressing vectors has long been recognized.

Work efficiency for parallel algorithms has often been sacrificed in favor of reducing the total
number of parallel steps an algorithm requires. This paper shows that for some algorithms, varia-
tions in the total number of parallel steps can have a small impact on the actual performance and
that work complexity is an important measure.

10

8 Acknowledgments

We would like to thank Guy Blelloch for the many helpful comments he had throughout the course
of this work.

References

(And88] Paul B. Anderson. Parallel hashed key access on the connection machine. In Ronnie Mills,
editor, Second Symposium On The Frontiers of Massively Parallel Computations, pages
643-645. IEES, IEEE Computer Society Press, 1988.

[Ble90] Guy E. Blelloch. Vector models for data-parallel computing. MIT Press, 1990.

[Ble92] Guy E. Blelloch. NESL: a nested data-parallel language. Technical Report CMU-CS-92-
103, School of Computer Science, Carnegie Mellon University, 1992.

[Gal68] R. G. Gallagher. Information Theory and Reliable Communication. John Wiley and Sons,
Inc., 1968.

[Gon90] Gaston H. Gonnet. Handbook of Algorithms and Data Structures. Addison Wesley, 1990.

[Kan90] Yasusi Kanada. A vectorization technique of hashing and its application to several sorting
algorithms. In PARBASE-90, International Conference on Databases, Parallel Architec-
tures, and Their Applications, 1990.

(Knu68] Donald Knuth. The Art of Computer Programming; Volume 3: Sorting and Searching.
Computer Science and Information Processing. Addison-Wesley, 1968.

[LPP91] Fabrizio Luccio, Andrea Pietracaprina, and Geppino Pucci. Analysis of parallel uniorm
hashing. Information Processing Letters, 37:67-69, January 1991.

[Pet57] W. W. Peterson. IBM J. Research and Development, 1:130-146, 1957.

[SH86] Guy L. Steele Jr. and W. Daniel Hillis. Connection Machine Lisp: Fine-grained paral.-l
symbolic processing. Technical Report 86.16, Thinking Machines Corporation, May 198¢.

[Wyl79] James Christopher Wyllie. The complezity of Parallel Computation. PhD thesis, Cornell
University, 1979.

A Analysis of the Algorithm

The behavior of the parallel hashing algorithm for linear probing will be analyzed by comparing it
to its serial counterpart. The total work, W, of the parallel hashing algorithm is the sum of the
lengths of the work vector over all iterations. Since each key remains in the active vector for only
as many iterations as it requires probe steps, the total work is the sum of the number of probes
required to insert all n keys. When the hash function and hash table size are the same for the serial
and parallel algorithms, the total number of probes required by each of the algorithms is shown to
be the same.

The number of iterations required to insert all of the keys could conceivably be n for a partic-
ularly bad arrangement of keys, however this is almost never the case. An expected bound on the
number of iterations required will be made by examining the expected number of probes required
to insert the worst-case key.

11

A.1 The total work required to insert N keys

A surprising property of the serial algorithm for Linear Probing was first pointed out by W. W.
Peterson [Pet57):
THEOREM 1: The total number of probes required to insert N keys remains unchanged regard-
less of the order in which the keys are inserted in the table.
PROOF: (due to Knuth, [Knu68]) The keys are presented in some order A,, A3,...An. It suffices
to show that the total number of probes needed to insert the keys is the same as the total number
needed for 4;...4;_14;+14;Ai42...AN,1 < i < N. There is clearly no difference unless the (i + 1)st
key in the second ordering falls into the position occupied by the ith in the first ordering. But then
the ith and the (i + 1)st merely exchange places, so the total number of probes for the (i + 1)st is
decreased by the same amount the number for the ith is increased. 1

A similar theorem holds for inserting keys in parallel.
THEOREM 2: The total number of hash sites examined remains unchanged if two or more keys
are inserted in parallel.
PROOF: Consider two keys presented in order A;, A,. If, in parallel, the two keys begin their
probes at two different locations, then because they each move only one site forward each iteration,
the two keys will find the same empty hash sites as they would had they been inserted in sequence.
If the keys happen to begin at the same site, then the first two empty sites past their starting point
are the two sites that the keys will find. The two possible arrangements of these two keys into the
two sites are exactly the two arrangements dictated by the serial presentation order A4,, A; and
Aj, A;. Thus, parallel insertion has the same effect as a random exchange of the order in which
keys are inserted by a serial algorithm, which by the previous theorem does not affect the total
number of probe steps made. |

These two theorems state that the parallel linear probing algorithm performs exactly the same
number of probes as its serial counterpart. The analysis of the numbers of probes required to insert
n elements into a hash table using linear probing is well understood. From [Knu68] we have the
following: The average number of probes required to insert the ith key is C! = Y, c,.<m rP: (%)
where P,(i) is the probability that the ith key requires » probes to find an unoccupied site. The
average number of probes to insert all n keys is C, = 1Y ;c, C!. The total work is simply
W = nC, for n keys. Knuth gives the value of C, for linear probing as C,, =~ 1log ;1 where
a = 2. Thus, when the hash table is sized so that m = ©(n), the expected work performed by the
parallel algorithm for linear probing is

1

1
W-nC,.~n;log1_a = O(n).

A.2 The total number of iterations required to insert N keys

The Lengest Length Probe Sequence (LLPS) quantity associated with a hashing algorithm measures
the longest sequence of probes needed to locate any of the n keys inserted in the table. The LLPS
measure is a random variable whose maximum value is obviously n for linear probing. However its
average value over all possible arrangements of keys in the hash table, the average LLPS, is also of
interest.

Since the parallel linear probing algorithm requires as many iterations as the longest length
probe sequence for any key, the average LLPS figure of the serial algorithm measures the average
number of iterations that our parallel hashing algorithm requires. Gaston Gonnet [{Gon90] has
derived bounds on the average LLPS for linear probing and shows that it is O(logn), when m > n.

12

Thus, the parallel step complexity for n keys is
S = O(logn).

Our experience shows that the average number of iterations required for the hashing algorithm to
complete grows slowly with the number of keys. Data presented later shows that the insertion of
one million keys is achieved in less than 20 iterations, on average. However, the work figure is a
more accurate measure of the total amount of time required by the algorithm.

13

